$\qquad$

## C.U.SHAH UNIVERSITY

 Summer Examination-2017
## Subject Name : Automotive CAD

Subject Code : 4TE06ACA1

## Branch : B.Tech (Automobile)

Semester : 6
Date : 11/04/2017
Time :2:30 To5:30
Marks :70
Instructions:
(1) Use of Programmable calculator \& any other electronic instrument is prohibited.
(2) Instructions written on main answer book are strictly to be obeyed.
(3) Draw neat diagrams and figures (if necessary) at right places.
(4) Assume suitable data if needed.Attempt the following questions:14
a) Define Computer Graphics. ..... 01
b) Define clipping. ..... 01
c) What is viewing transformation? ..... 01
d) What is use of computer in Design? ..... 01
e) What is mapping? ..... 01
f) What are the characteristic of shape function? ..... 01
g) What is Global coordinates? ..... 01
h) Write Principles of virtual energy ..... 01
i) Define natural Co-ordinates. ..... 01
j) Give the full form of DVST. ..... 01
k) Name of two CAD software. ..... 01
l) Define the FEM. ..... 01
m) Define the Raster scan. ..... 01
n) Gibe the application of CAD software. ..... 01
Attempt any four questions from Q-2 to Q-8
Q-2 Attempt all questionsa) Explain how CAD helps to synthesize a product design and do engineering07analysis for getting optimal design.
b) A triangle ABC with vertices $\mathrm{A}(0,0), \mathrm{B}(4,0)$ and $\mathrm{C}(2,3)$ is to be subjected to following two transformation in order:

1. Translation through 4 and 2 units along $X$ and $Y$ - directions respectively,
2. Rotation through $90^{\circ}$ in counterclockwise direction about the new position of point C .
Determine : (i) the concatenated transformation matrix; and
(ii)The new position of triangle.


## Attempt all questions

a) What do you understand by C-rep and B-rep approaches in solid modeling? Compare them.
b) Show sequence of transformation to be made to mirror any entity about the line with the equation $\mathrm{y}=\mathrm{mx}+\mathrm{b}$.

Attempt all questions
a) Derive the equation of Hermite's cubic spline and represent in matrix form. Also write properties of this synthetic curve.
b) Generate a Bezier curve using the control points: $(2,0),(4,3),(5,2),(4,-2),(5,-3)$, and $(6,-2)$.

## Attempt all questions

a) Prepare a C program for the design of Shaft subjected to Bending \& Twisting

Moment.
b) Write a Breshnham's algorithm for line having slop more then $45^{\circ}$

## Attempt all questions

a) What is design optimization? Explain its application and advantages in engineering design
b) A gear manufacturing unit manufactures helical gear pairs and worm gear pairs using lathe machines, hobbing machines and profile grinding machines. The machining time required for each type of gear pair, the machining time available on different machines and the profit on each type of gear pair are given in below table.

| Type of machine | Machining time required for |  | Max. machining |
| :--- | :--- | :--- | :--- |
|  | Helical gear pair, <br> minutes | Worm gear pair , <br> minutes | per week, <br> minutes |
| Lathe machine | 10 | 20 | 4000 |
| Hobbing machine | 25 | 10 | 5000 |
| Profile grinding <br> machine | 06 | 14 | 2100 |
| Profit per unit | Rs. 800 | Rs. 2000 |  |

Determine the number of helical gear pairs and worm gear pairs manufactured per week to maximize the profit.

## Attempt all questions

a) Explain Penalty approach and Elimination approach for FEA.
b) A stepped metallic bar, made of aluminum ( $\left.\mathrm{E}_{1}=70 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2}\right)$ and steel $\left(\mathrm{E}_{2}=200 \mathrm{x}\right.$ $10^{3} \mathrm{~N} / \mathrm{mm}^{2}$ ), is subjected to the axial force of 5000 N , as shown in fig.. It is attached to rigid wall at node 1 . Determine nodal displacements using finite element analysis.



Q-8

## Attempt all questions

a) Explain the steps involved in the solution of static structural problem using finite element method.
b) Show in fig. a truss consisting of three elements whose EA/L value is $1000 \mathrm{~N} / \mathrm{mm}$ using FEM determine the deflection at node 2 and reaction force at support.



